Wärmedämmung 365 Richtig dämmen - mit nachhaltigen Dämmstoffen

Akke Wilmes Architekt Dipl.-Ing. Dipl.-Ing. f. Ökologisches Bauen Energieberater Mediator

Heizen heute? ...

Was kostet die Welt!

Wie teuer wird es? GegenSteuern!

Preissituation 2024 inkl. Grundgebühr

Energieverbrauch 15.000 kWh

Gaspreis ~ 8-9 ct

CO2 Faktor 1,1

Wärmepumpe 25 -30ct/3 ~ 8-10 ct

CO2 Faktor 0,5

Fernwärme ~ 12 ct

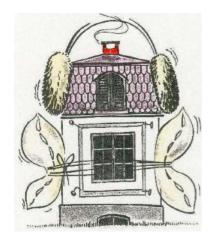
CO2 Faktor 0,2-0,8

Öl 90 ct / 10,5 = ~ 10 ct

CO2 Faktor 1,2

Verbrauch senken Effizienzsteigerung

Selbst erzeugen

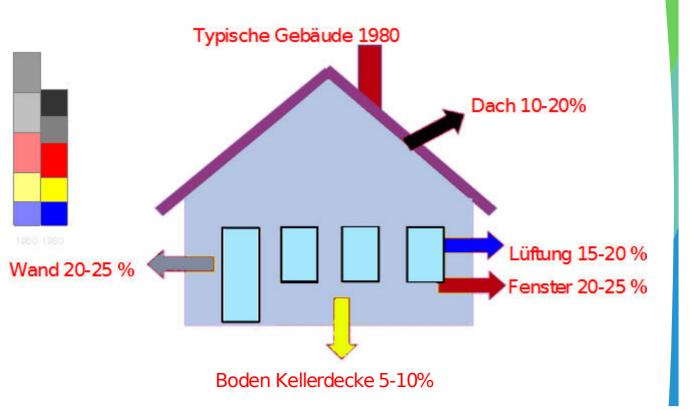

... noch nie so notwendig und attraktiv zugleich

Ihre Zahlen Daten Fakten

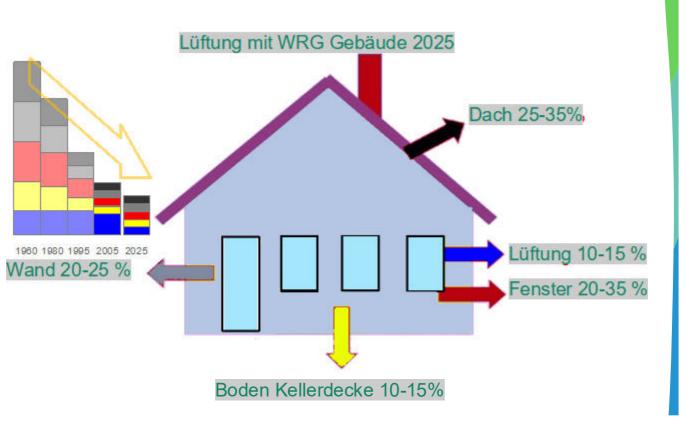
Daten von Interesse!

- Verbrauch Heizung der letzten 2-3 Jahre (kWh)
- Verbrauch Strom der letzten 2-3 Jahre (kWh)
- Schornsteinfegerbescheinigung (Kesselart und Leistung, Alter, Abgasverlust)
- Größe des Warmwasserspeichers
- Zusatzenergie durch Holzofen? RM o. SM o. kg
- Gebäudealter
 - Alter der Bauteile (Dämmstandard)
 - Fenster
 - Dach / oberste Geschoßdecke
 - Fassade
 - Fußboden

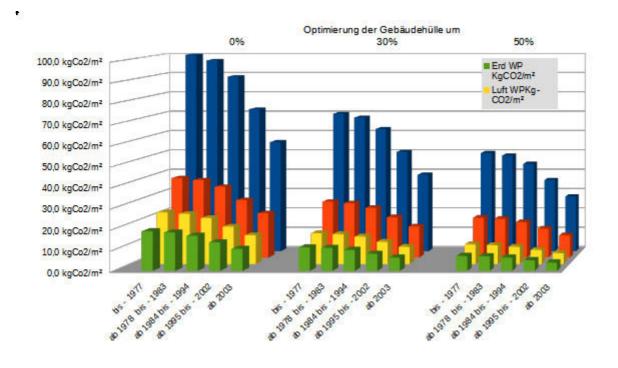
365 Tage - Ihr Verhalten

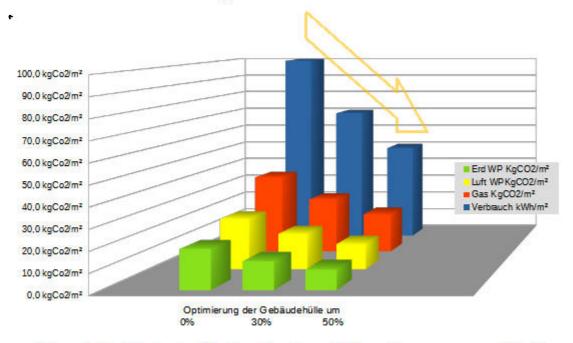


Heizen Lüften Regeln Beschatten
Kühlen
Lüften
Regeln
Sonnenenergie


März April September Oktober November Dezember Januar Februar Mai Juni Juli August

Eine Handvoll Energieverluste Außenwände Fenster Lüftungsverluste


Ein Haus voll Energieverluste


Ein Haus voll Energieverluste

Potential der Wärmedämmung in Schritten

Wo sollten wir 2045 energetisch sein? Zwei Teilstrecken gemeinsames Ziel

Das Ziel ist definiert, der Weg kann gewählt werden

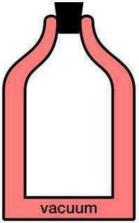
Respekt vor Technik und Umwelt ist wichtig! Angst ist kein guter Begleiter! Wir sind nicht alleine!

1900 Energiewende, Öl als Energieträger
Licht durch Strom. Verkehr durch Benzin!
1950 Kernkraft als potentieller Wendekandidat
Ölkriese 70er erste Mal Sparen und effizienter Energieeinsatz
1978 Dämmen verpflichtend
1990 regenerative Energien

Gebäude aus 1980 benötigen ~ 4 mal mehr Energie wie 2010 Alle Gebäude 2045 sollen so wenig Energie verbrauchen, dass diese Energie 100 % regenerativ hergestellt werden kann.

Gebäude, die mehr wie 30 kWh/m²a benötigen müssen bis 2045 auf den Prüfstand, das sind mehr als 95% des Bestandes.

Dämmung ist ein Geschäft!


WIN-WIN

Energieersparnis
Wohlfühlen + Gesundheit
Nachhaltigkeit + Langlebigkeit
Arbeit
Zukunft + Sicherheit
Wärmeschutz (Energieerhaltung)
Schallschutz
Brandschutz
Feuchteschutz
Rendite

Innovation

Energieerhaltung

= Energieeinsparung

Der Nutzer ist zu 100% am Verbrauch beteiligt!

Lebenszyklen dämmende Bauteile

Kellerdecke

- Fussbodenaufbau (Dämmung & neuer Oberboden) 50-80 Jahre
- Dämmung Unterseite 40-60 Jahre
- Decke über Außenluft (Durchfahrt) 40-60 Jahre

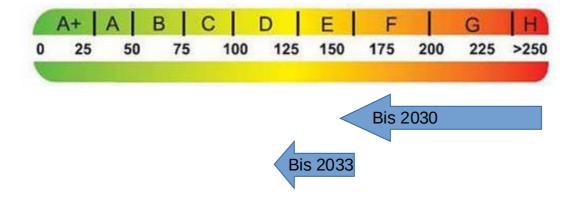
Wände von innen

Anstriche 10-20 Jahre / Dämmung 20-40 Jahre

Fenster Türen

- Fenster 30-60 Jahre
- Dachflächenfenster 20-25 Jahre
- Haustüren 40-70 Jahre

Dachdämmung


- Sparren 50-60 Jahre
- Oberste Geschossdecke 70-90 Jahre

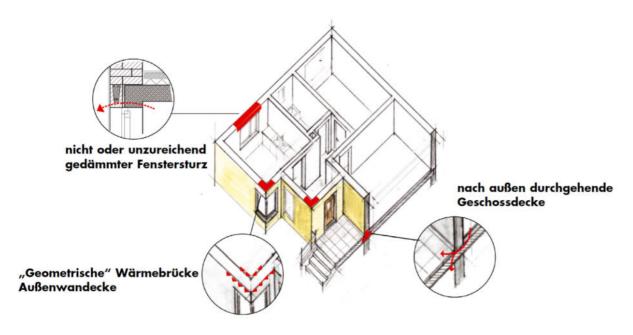
Außenwand Putz / WDVS

- Anstrich (alle 10-20 Jahre)
- Fassadendämmung bei Putz 30-40 Jahre
- Holzverkleidung 30-60 Jahre / Anstrich alle 5-10 Jahre

Nachrüstverpflichtung

- Zugängliche oberste Geschossdecken beheizter Räume zum unbeheizten Dachraum müssen bis Ende 2015 auf einen max. U-Wert ≥ 0,24 W/(m²K) gedämmt werden, wenn sie keinen Mindestwärmeschutz aufweisen – d.h. bei einem U-Wert > 0,91 W/(m²K)
- EU Richtlinie Wohngebäude

Woran sind Schwächen am Gebäude zu erkennen?

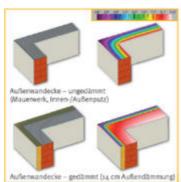

- Starke Auskühlung
- Überhitzung im Sommer
- Kalte Ecken, Schimmel
- Wärmebrücken
- Zugluft
- trockene Raumluft

Kleine Maßnahmen:

- Heizungs- und Lüftungsverhalten überprüfen
- Rollladenkästen dämmen
- Heizkörpernischen dämmen oder ausmauern
- Kellerdecken dämmenOberste Geschossdecken dämmen

Gebäudehülle - Wärmebrücken minimieren

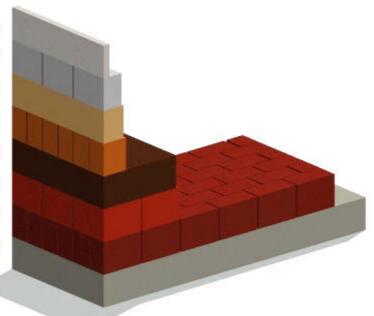
Quelle: EnergieAgentur.NRW


Gebäudehülle – Wärmebrücken minimieren


Außenwandecke

Vordächer

Auskragende Balkonplatte


Deckenanschlüsse Heizkörpernischen Fensteranschlüsse Geschossdecken Rolladenkästen

Wärmedämmwirkung von Baustoffen

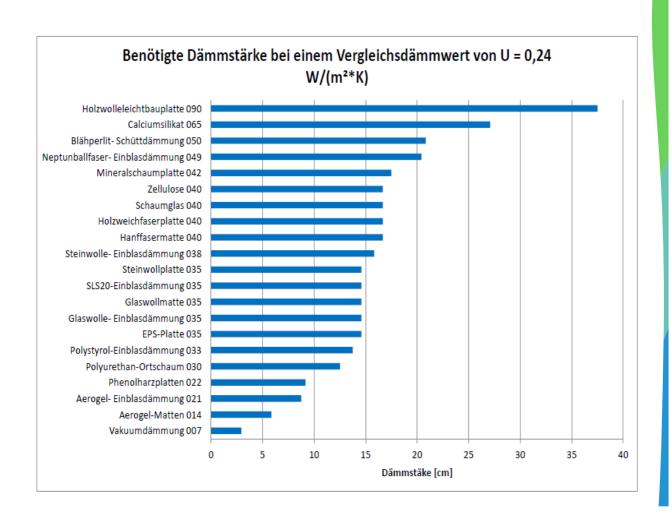
Dämmstoff 2,0 cm
Leichtbetonsteine 6,0 cm
Nadelholz 6,5 cm
Porenziegel 8,0 cm
Strohlehm 23,5 cm
Hochlochziegel 29,0 cm
Klinker 90,0 cm
Massivbeton 105,0 cm

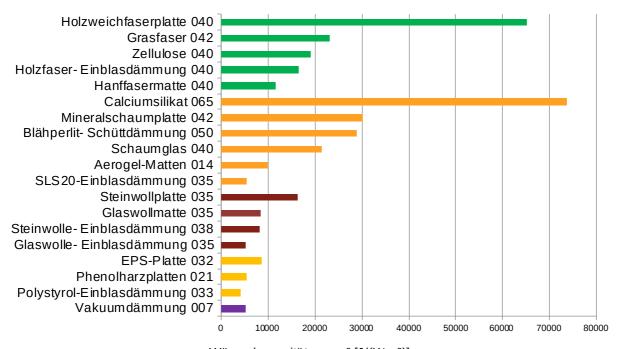
2 cm Dämmstoff haben die gleiche Dämmwirkung wie eine 105 cm starke Betonwand

22

Dämmstoffe zur Wanddämmung

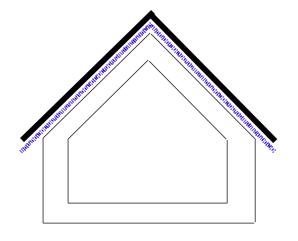
Hartschaum-Platten (Polystyrol, Styropor, Polyurethan) Mineralwoll-Platten Korkplatten Holz-Weichfaserplatten Schilfrohrplatten Schaumglasplatten Vakuumpaneele Nanogel!

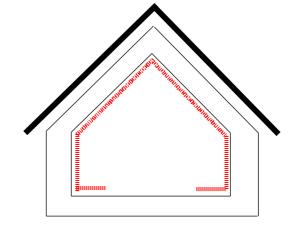

Wärmedämmverbundsystem Vorsatzschale (Klinker, Holz) Einblasdämmung



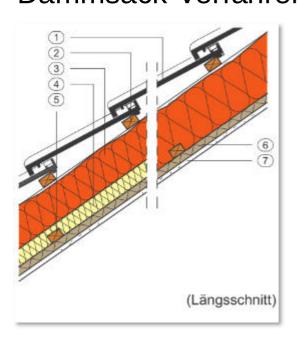
23


	mineralisch	synthetisch	Pflanzlich/ tierisch	recycelt
Eigenschaften	Nicht brennbar Verrottungsbe- ständig Hoher PEI	Gute Wärmedämm- wirkung Thermisch verwertbar Hoher PEI	Geringer PEI Hoher Wärmeschutz Kapillaraktiv Imprägnierung erforderlich	Aus synthetischen oder pflanzlichen Produkten Geringer PEI
Rohstoffe	Perlit, Glimmerschie- fer, Basalt, Anorthit	Erdöl	Pflanzenfasern, Tierfell	Zeitungsaltpapier, Altglas, PET- Flaschen, PUR- Sandwichelemente
Dämmstoffe	Blähperlit, Blähglas, Mineralwolle	Polyurethan, Melaminharz, Polystyrol	Gras, Hanf, Flachs, Holzfaser, Schafwolle	Zellulose, Glaswolle, PUR-Granulat Polyester- Dämmung




Wärmekapazität pro m^2 [J/(K* m^2)]

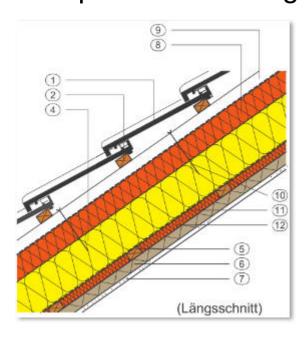
Dachdämmung & Luftdichtheit

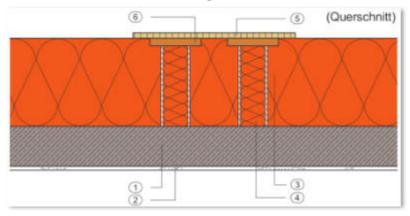

Winddichtung

Luftdichtheitsebene (Diffusion)

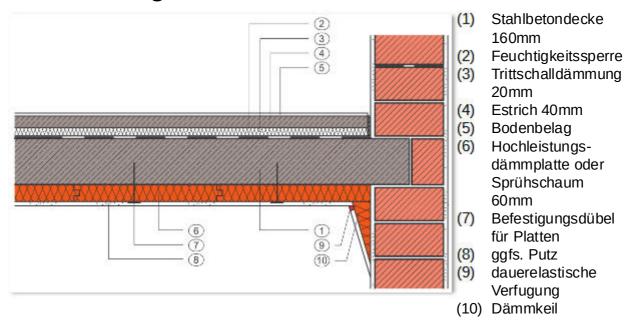
29

Dämmsack-Verfahren

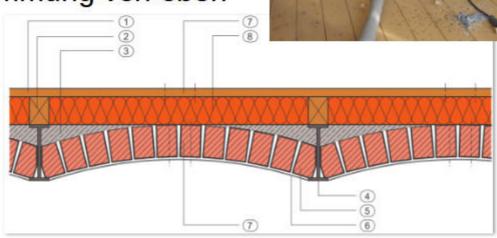

- (1) Dacheindeckung
- (2) Dachlattung 50/30mm
- (3) Sparren 140mm
- (4) Vorhandene Dämmstofflage 50mm
- (5) Lattung 50/30mm
- (6) Holzwolleleichtbauplatte 25mm
- (7) Innenputz 15mm
- (8) Hinterlüftungslatte 40/20mm
- (9) Innosack mit Einblasdämmstoff



Aufsparrendämmung


- (1) Dacheindeckung
- (2) Dachlattung
- (3) Sparren 140mm
- (4) Neue Dämmstofflage 160mm
- (5) Konstruktionslattung 50/30mm
- (6) Holzwolleleichtbauplatte 25mm
- (7) Innenputz 15mm
- (8) Imprägnierte Dämmstoffplatte als Unterdach
- (9) Konterlattung
- (10)Befestigung
- (11)Dampfbremse mit flexiblem sd-Wert
- (12)Mattendämmstoff 30mm

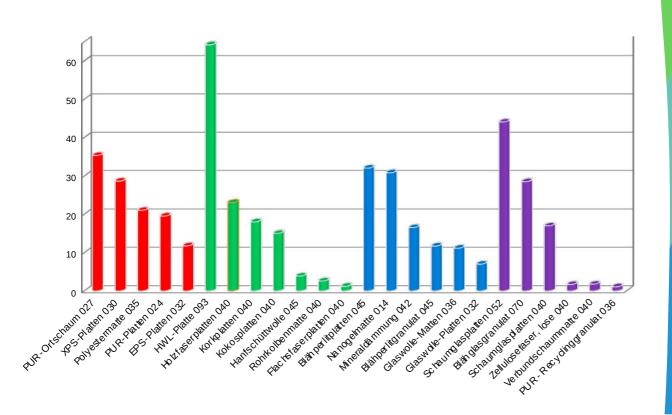
Geschossdecke unbegehbar



- (1) Stahlbetondecke 160mm
- (2) Innenputz 15mm
- (3) Einblasdämmstoff 150-400mm
- (4) Pappröhren 100mm als Traghülsen mit Dämmstoff gefüllt
- (5) OSB-Platte 18mm
- (6) Konstruktionsholz unter Plattenstöße

Dämmung von unten mit Platten

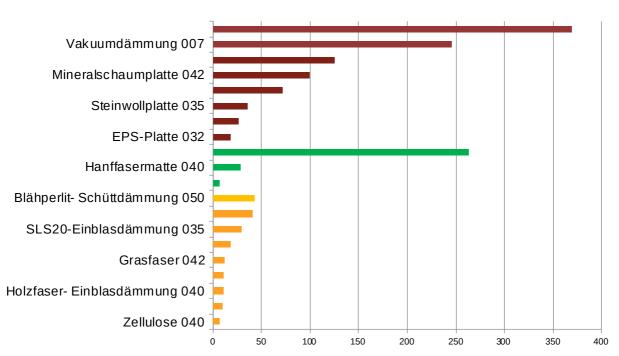
- (1) Holzdielen
- (2) Lagerhölzer
- (3) Beton
- (4) Stahlträger
- (5) Vollziegel
- (6) Putz
- (7) Ggf. erforderliche Einblasöffnungen
- (8) Einblasdämmstoff

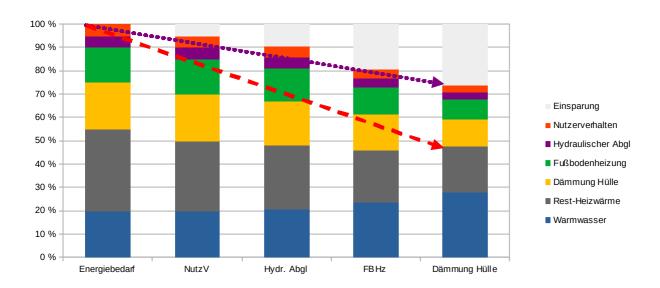

Baustoffklasse	Bezeichnung	Dämmstoffkategorien		
A1	nichtbrennbar, ohne Anteile von brennbaren Stoffen	mineralische Dämmstoffe		
A2	nichtbrennbar, mit Anteilen von brennbaren Stoffen	mineralische Dämmstoffe		
B1	schwerentflammbar	synthetische Dämmstoffe sowie einige Dämmstoffe aus nachwachsenden Rohstoffen		
B2	normalentflammbar	synthetische Dämmstoffe sowie Dämmstoffe aus nachwachsenden Rohstoffen		
B3	leichtentflammbar	_*)		
*) Stoffe der Baustoffklasse B3 sind nicht als Dämmstoff zugelassen				

Gesundheit - Schadstoffe im Brandfall

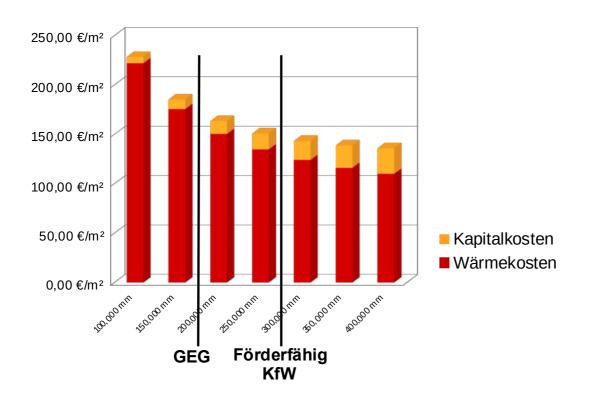
- Organische Stoffe (Holz, Polystyrol, Polyurethan): Freisetzung von CO₂ und CO (immer)
- Polystyrol: Freisetzung von Styrol
- Phenolharze: Freisetzung von Phenol, Formaldehyd
- Polyurethan: Freisetzung von Blausäure und Isocyanate
- Feuchtes Holz: Freisetzung von Formaldehyd
- Holzweichfaserplatte: Freisetzung von Blausäure

Primärenergiefaktoren für U-Wert = 1


Siegel und Zertifizierungen



Preise / m²


Preis pro m² [€] U-Wert 1 W/m²K

Einsparpotential verschiedenerer Maßnahmen Vor dem Wechsel der Heizung 25 - 53 %

Dämmung obere Geschossdecke

30 Jahre nicht begehbar

Dämmung – Feuchtigkeit und Lüftung

Anteil der Lüftungswärmeverluste am Heizwärmebedarf

Richtig Lüften?

3 + 1 mal täglich!

Lüftungstechnik?

Wirtschaftlichkeit

Abhängig von:

- Preis und Preisentwicklung bei Energieträgern,
- CO2 Abgabe
- Investitionsbedarf,
- Kreditzinsen,
- Effizienz Heizungsanlage,
- Dämmstandard des Gebäudes im Ist-Zustand.

Förderung und Forderung iSFP-individuellerSanierungsFahrPlan

Förderung

KFW Wohngebäude – Kredit

BAFA 15 % Zuschuss + 5 % iSFP

Finanzamt EST (20%) auf 3 Jahre (7+7+6)

NRWBANK Darlehn (zinsgünstig)

Düsseldorf nach Fläche und System

Förderungen Düsseldorf müssen vor Auftragsvergabe

beantragt und bewilligt sein!!! Förderung Bund erst nach der Zusage Düsseldorf beantragen!!!

Für alle Programme gilt:

Immer die aktuellen Förderkonditionen beachten!!

Dämmung dämmt!

Das ist das, was Sie kann, wenn man sie lässt!

Dämmt die Energie-Kosten

Dämmt Schall

Dämmt Wärme

Dämmt Hitze (Brand)

Dämmt Feuchte

Dämmt Wohlbefinden

Dämmt nachhaltig (sichert die Substanz)

Dämmt den Ausstoß von CO2